-
大数据分析工具必须具备的基本特性
所属栏目:[大数据] 日期:2022-03-31 热度:199
很多企业需要在大数据分析工具中获得一些基本功能,才能在2021年彻底改变业务。 在这个快节奏的世界中,传统的大数据分析是一个耗时的过程。商业世界中有着来自环境各个部分持续流动的实时数据。为了适应当前情况,企业必须在大数据分析工具上进行投资,作为[详细]
-
大数据可以使特许经营业务蓬勃进展
所属栏目:[大数据] 日期:2022-03-31 热度:73
大数据技术对现代的运营变得非常重要。特许经营行业是受益于数据科学重大突破的领域之一,一些大数据初创公司甚至专门为特许经营提供服务,例如FranConnect。精明的特许经营权所有者还可以找到使用大数据技术更有效地发展业务的方法。 有很多令人信服的理由[详细]
-
大数据如何成为建筑业的重要技术?
所属栏目:[大数据] 日期:2022-03-31 热度:125
当人们考虑到各行业采用创新技术时,可能不会想到建筑行业。这是有原因的,因为数十年来建筑行业在采用新技术方面进展缓慢。不过,这种情况已经开始改变,世界各地的建筑公司都在采用像大数据这样的创新技术。 建筑行业对创新技术的新兴趣来自于必要性。众所[详细]
-
现代数据分析的角度
所属栏目:[大数据] 日期:2022-03-31 热度:105
如果没有合适的工具,组织将很难应对业务挑战。根据一些数据分析计划可以提供组织所需的基本见解。 即使在冠状病毒持续蔓延期间,有些事情也不会改变。与往年一样,在行业媒体进行的2021年首席信息官的现状调查中,接受调查的1062名IT领导者中有许多人选择数[详细]
-
大数据对成功营销至关重要的原由
所属栏目:[大数据] 日期:2022-03-31 热度:89
在当今的数字时代,如果组织还在采用传统的平台开展营销活动,那么其成功的机会可能会越来越[详细]
-
关于数据科学 CIO在2030年可能看到的几种场景
所属栏目:[大数据] 日期:2022-03-31 热度:123
企业将如何使用数据解决未来10年面临的业务问题?可以考虑采用一些大胆的数据科学场景和如何做好准备的建议。 企业从解决业务问题发展到实施可行的决策有三个标准步骤。在此使用一个假设的例子来比较这些步骤在目前和2030年是如何完成的,并探讨如何为未来发[详细]
-
如何构建以数据为中心的框架
所属栏目:[大数据] 日期:2022-03-31 热度:156
如今,几乎每个基础设施供应商都将混合云或多云作为一种产品采用。采用多个云服务与采用一个整体云计算解决方案比人们想象的要复杂得多。以下将研究混合云模型和多云模型的有效性,尤其是研究数据如何成为未来混合部署环境的中心。 混合被定义为多种事物的组[详细]
-
为啥给文本和数据挖掘提供业务案例是拥抱数字技术的关键
所属栏目:[大数据] 日期:2022-03-31 热度:113
人们如今正生活在一个具有无限潜力的时代。技术进步使人工智能和机器学习可以为人类完成一些更具意义的工作,并提高研究团队的能力。 然而,如果人们要真正意识到人工智能技术带来的可能性,则必须确保这一新研究工具能够以有意义的方式表达出来,无论是在简[详细]
-
数据项目成功的三个必不可少的元素
所属栏目:[大数据] 日期:2022-03-16 热度:172
Carhartt公司首席数字与信息官John Hill表示,在疫情爆发时,职业装公司Carhartt可能与虚拟的合作组织相差甚远。但也像其他组织一样,Carhartt不得不重新思考在当今的混合工作环境下如何完成工作。 以下是经过编辑的对话节[详细]
-
大数据与Hadoop的几大优点
所属栏目:[大数据] 日期:2022-03-16 热度:106
Hadoop与竞争对手相比有哪些优势? 到目前为止,人们可能已经听说过ApacheHadoop。这个名字来源于一只可爱的玩具大象,但Hadoop只不过是一个毛绒玩具。Hadoop是一个开源软件项目,它提供了一种存储和处理大数据的新方法。 以下来看看。 1. Hadoop是可扩展的[详细]
-
数据研发该怎样做好业务方管理
所属栏目:[大数据] 日期:2022-03-16 热度:159
伴随着业务的发展,业务方通常会提各种各样的数据需求。面对繁杂的需求,数据研发可能会遇到下面这些问题: 面对这些问题,我们需要学会做好业务方的管理,这样才不至于让自己陷入被动的深渊而不能自拔。 窘境 面对源源不断的需求,数据研发会越发地感觉到自[详细]
-
你真的明白ELT和ETL吗?
所属栏目:[大数据] 日期:2022-03-16 热度:56
ETL 和 ELT 有很多共同点,从本质上讲,每种集成方法都可以将数据从源端抽取到数据仓库中,两者的区别在于数据在哪里进行转换。 接下来,我们一起详细地分析一下 ETL 和 ELT各自的优缺点,看看在你们现在的业务中用哪种方式处理数据比较合适。 1.ETL ETL -[详细]
-
社交媒体分析在未来业务中将发挥着至关重要的用处
所属栏目:[大数据] 日期:2022-03-16 热度:61
聪明的企业需要知道如何利用数据分析来充分利用他们的社交媒体战略。如果他们采用数据驱动的社交网络方法,他们将获得更多收益。 数据分析和社交媒体可以很好地齐头并进。事实上,有一个完整的领域被称为社交媒体分析,IBM上的这篇文章对此进行了描述。这两[详细]
-
Kyligence 智能管理,使数据价值最大化
所属栏目:[大数据] 日期:2022-03-16 热度:173
对于当今的企业来说,如何精细化运营来降本增效是其面临的最为重要的问题,而深度挖掘数据、充分利用数据的价值是企业精细化运营必不可少的一环。相关数据显示,72%的企业首选大数据应用需求是基于客户行为分析的大数据营销,其次产品创新、风险预测、供应链[详细]
-
在云中实施大数据的详情剖析
所属栏目:[大数据] 日期:2022-03-16 热度:98
在云中实施大数据的详情剖析: 1、关于云计算 云是IT行业的热门话题。它的受欢迎程度越来越高,越来越多的公司正在使用它。简单来说,云是可以存储和访问数据、程序和其他信息的异地位置。信息存储在使用网络连接的服务器上。这个异地位置就是云。 云很重要[详细]
-
2022年实时数据管理趋向
所属栏目:[大数据] 日期:2022-03-16 热度:93
数据现在必须实时流式传输,从而实现更快的可扩展性和出色的敏捷性。 随着数字化转型计划的顺利进行,公司正在投资于获取大量数据的战略,使他们能够在关键时刻做出正确的决策。处理这种数据存储的庞大数量和复杂性极具挑战性。 组织将需要实时从流数据中收[详细]
-
不会体系化建模,那数据治理不就是乱来吗?
所属栏目:[大数据] 日期:2022-03-16 热度:114
本文基于美团配送数据治理的历程,重点和大家分享一下配送数据底座的建设与实践。如何通过体系化建模建立起数据定义到数据生产的桥梁,达成数据定义、模型设计、数据生产三个环节的统一,消除因数据标准缺失和执行不到位引发的数据信任问题,在高质量地实现[详细]
-
聊聊HBase海量数据高效入仓处理方案
所属栏目:[大数据] 日期:2022-03-16 热度:65
方案背景 现阶段部分业务数据存储在HBase中,这部分数据体量较大,达到数十亿。大数据需要增量同步这部分业务数据到数据仓库中,进行离线分析,目前主要的同步方式是通过HBase的hive映射表来实现的。该种方式具有以下痛点: 需要对HBase表进行全表扫描,对HB[详细]
-
SparkSQL 在企业级数仓建设的优点
所属栏目:[大数据] 日期:2022-03-15 热度:61
Apache Hive 经过多年的发展,目前基本已经成为业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDBC 客户端、支持标准 JDBC 接口访问的 HiveServer2 服务器、管理元数据服务的 Hive Metastor[详细]
-
2022年数据管理市场的发展趋向
所属栏目:[大数据] 日期:2022-03-15 热度:179
数据管理是一个应用广泛的市场,专注于优化数据的质量、组织和安全性,以帮助企业在各部门之间处理数据。 人们需要了解有关数据管理市场的所有信息: (1)数据管理市场 根据调研机构Expert Market Research公司发布的研究数据,2021年全球数据管理市场规模达[详细]
-
企业需要不断推进数据策略
所属栏目:[大数据] 日期:2022-03-15 热度:113
Cloudera也与技术市场研究公司Vanson Bourne联合编写了《Cloudera企业数据成熟度报告:认识企业数据战略对业务的影响》报告,报告采访了2100位IT决策者,以及1050位业务决策者,亚太地区有700多位参与调查,其中150多位来自中国。 企业通过制定路线图来帮助[详细]
-
建议收藏!大数据分析如何协助企业成长
所属栏目:[大数据] 日期:2022-03-15 热度:80
您是否知道,95%的企业表示管理非结构化数据对他们的业务来说是个问题? 不幸的是,我们今天生成的所有数据都是非结构化的。因此,分析数据既困难又昂贵,这解释了为什么它是大多数公司的主要问题。 数据分析可以告诉您业务的健康状况,以便您对业务中发生的[详细]
-
数据是新石油,提炼新石油要遵循几个准则
所属栏目:[大数据] 日期:2022-03-15 热度:127
数据是新的石油,因为数据可以被用来获得洞察。根据公司的业务,洞察可以提高客户留存率、提升销售、产生新的收入模式、广告等等。如果数据是新的石油,洞察就是新的财富。 由于计算、物联网、机器生成的数据等方面的进步,数据量现在正在爆炸式增长。因此,[详细]
-
将大数据转化为营销收入的几个窍门
所属栏目:[大数据] 日期:2022-03-15 热度:199
通过分析客户的数据,可以通过提供改进的商品或服务轻松识别和满足消费者的需求。这还消除了营销策略师的猜测,因为他们可以快速确定客户的购买行为,并将其作为营销活动的基[详细]
-
十个 Python 小秘诀,覆盖了90%的数据分析需求!
所属栏目:[大数据] 日期:2022-03-15 热度:63
数据分析师日常工作会涉及各种任务,比如数据预处理、数据分析、机器学习模型创建、模型部署。 在本文中,我将分享10个 Python 操作,它们可覆盖90%的数据分析问题。有所收获点赞、收藏、关注。 1、阅读数据集 阅读数据是数据分析的组成部分,了解如何从不同[详细]
